

Didactic Material of the ProQR Alternative Fuels for Aviation in Brazil

Claudio J. A. Mota

Federal University of Rio de Janeiro – Institute of Chemistry, Brazil Federal University of Rio de Janeiro – School of Chemistry, Brazil INCT Energy & Environment, UFRJ, Brazil

Laboratory of Hydrocarbon Reactivity, Biomass and Catalysis Chemistry Institute - UFRJ

Chemistry and Fuels

CO₂ in the Atmosphere

Carbon Cycles

Didactic Material

- 0. Introduction on ProQR Project and Global Context
- 1. Brazil Infrastructure & Future energy strategies
- 2. Renewable Energy Potential
- 3. Feedstocks for PtL (Water / CO₂)
- 4. Electrolysis & Syngas production)
- 5. Synthesis
- 6. Post-Processing (Refinery)
- 7. Certification
- 8. EPC Engeneering, Procurement, Construction
- 9. Operation, Maintenance, End of Life
- 10. Products
- 11. Energy Planning

Didactic Material \Leftrightarrow Feedstock

- Synthetic fuel production
- Electrical energy sources
- Biomass
- Sustainability
- Carbon
- Carbon via CO₂
- Reverse Water Gas Shift
- Water

Synthetic Aviation Fuel - SAF

Brazil's Scenarios for ProQR

Electricity

Hydropower

Wind

Bioelectricity - bagasse

Laboratory of Hydrocarbon Reactivity, Biomass and Catalysis Chemistry Institute - UFRJ

Brazil's Scenarios for ProQR

Biomass ⇔ BTL (syngas)

Sugar cane

Corn

- Soybean
- Vegetable oils
- Tallow

Agriculture wastes

Brazil's Scenarios for ProQR

Carbon \Leftrightarrow **CO**₂

- ➤ From industrial sources ⇔ flue gas;
- ➢ From the atmosphere ⇔ DAC;
- From biogas ⇔ anaerobic fermentation (garbage);
- ➤ From sugar fermentation ⇔ ethanol;

Brazil's Scenarios for ProQR

13% of the non-salted water of the world

Water \Leftrightarrow H₂

Surface water;
Ground water;
Sea water;

✓ Water electrolysis;

 ✓ Water splitting ⇔ photoelectrocatalysis and photocatalysis

Sourece: Catalysts 2019, 9, 976; doi:10.3390/catal9120976

Final Remarks

- The development of aviation fuel of low environmental impact is within the goals of the government program named Fuels of the Future (Combustível do Futuro);
- ProQR didactic material emcompasses all the aspects related with technologies and issues for the production of low-environmental impact aviation fuel;
- □ The didactic material will serve as reference for graduate and undergraduate courses in Brazilian universities;
- □ Brazilian specificities ⇔ solar energy; biomass

Education for Sustainability

www.totheprincipal.blogspot.com