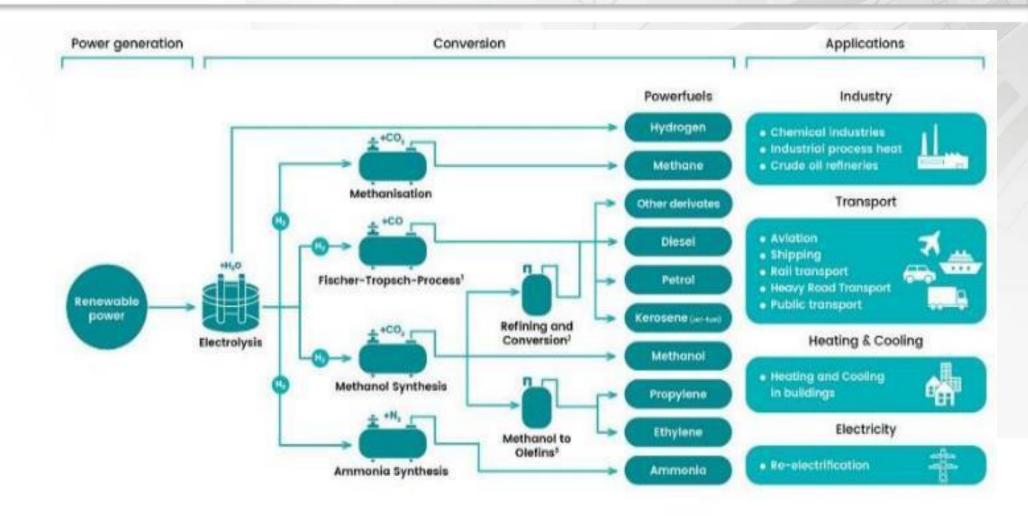
An innovative concept for Power-to-X application in the South African Maritime Sector


Thomas Roos
26 February 2025

Recap: What is green hydrogen and PtX?

Fuel based on H₂ from electrolysis of water using renewable electricity

Starting point

Why is green hydrogen important?

1) Climate: regulatory and financing pressure

Global	EU	SA
Paris Agreement (keep warming well below 2°C, preferably below 1.5°C)	European Green Deal EU net zero by 2050	JETP \$8.5 bn
Finance activism (exit fossils, esp. coal)	CBAM	Donors: EU, US, DE, F, UK Decarbonization, electric vehicles, GH ₂
IMO (2023 MEPC 80: net zero @ 2050)	6 products: NH ₃ / fertilizer, iron / steel, aluminium, cement, electricity, H ₂	Boodisonization, cicotine verneice, Cing

- 2) Economics: Declining costs of RE in good areas competitive since ~2014
- 3) Green electricity has limits: GH₂ is needed to decarbonize "hard-to-abate" sectors.....

PtX: H₂ reality check

If alternatives exist, H₂ should not be the 1st choice, for reasons of efficiency and cost

Electrification with RE is always best decarbonisation choice: cheapest & most efficient

H₂ & PtX is 2nd best choice: more expensive & less efficient, but only remaining option for:

- RE-constrained territories (like Japan)
- "Hard-to-abate" sectors
 - Heavy-duty, long-distance transport:
 - Aviation
 - Shipping
 - Long-distance trucking
 - Rail*
 - Industry:
 - Iron for steelmaking
 - Cement
 - Ammonia
 - Plastics

Battery-electric vehicles Fuel cell vehicles Internal combustion engine vehicles Renewable power Renewable power Renewable power 100 % 100 % 100 % Transmission (95 %) Transmission (95%) Transmission (95 %) Electrolysis (70%) Electrolysis (70%) Battery use Hydrogen Hydrogen 67 % 86 % 67 % Power-to-Liquid (70 %) Compression/ Electric motor (85 %) Mechanical (95 %) transport (80 %) Transport (95 %) 32 % Fuel cell (60 %) 44 % Liquid fuel Electric motor (85 %) Internal combustion Mechanical (95 %) engine (30 %) Mechanical (95 %) 69 % 26 % 13 % Total Total Total

Source: Agora, 2018

Starting point

Why is green hydrogen important?

1) Climate: regulatory and financing pressure

Global	EU	SA
Paris Agreement (limit to 1.5°C)	European Green Deal EU net zero by 2050	JETP \$8.5 bn
Finance activism (exit fossils, esp. coal)		Donors: EU, US, DE, F, UK
IMO (2023 MEPC 80: net zero @ 2050)	CBAM 6 products: NH ₃ / fertilizer, iron / steel, aluminium, cement, electricity, H ₂	Decarbonization, electric vehicles, GH ₂

- 2) Economics: Declining costs of RE in good areas competitive since ~2014
- 3) Green electricity has limits: GH₂ is needed to decarbonize "hard-to-abate" sectors.....
- 4) Public policy support for imports of PtX
- Japan: 300 kt/y from 2030, 5-10 Mt/y by 2050
- Germany: ~3 Mt/y by 2030, but only 420 kt/y in-country, remainder from RE-rich partner countries
- EU: Invasion of Ukraine: REPowerEU to reduce Russian gas, increase EU GH2 imports by 10 Mt/y

South Africa can export sunshine and wind

Excellent solar & wind resources in Southern Africa -> bulk GH₂ costs competitive to other coastal countries

Relatively few competitors, and the market is large

3 classes of H₂ market for SA

Each with different characteristics

- **Export market: competing on price delivered in EU, Far East**
- Local market inland: who will pay the premium?
 - Where costs are less important: Mining rather than classic logistics
 - Where costs are competitive: Fertiliser?
- **Border market:** Refuelling aviation and shipping calling at SA
- Aviation: PtL kerosene from FT infrastructure at Sasol & PetroSA. Carbon source an issue (RED II)!
- Shipping:
 - Market created by IMO MEPC 80 (July 2023) Net-zero by 2050, 5% zero-carbon by 2030.
 - Large GH₂ Volumes: For 2018 port calls to be 100% green: 504 kt/y for SB + CT, 247 kt/y for PE + Coega
 - Saldanha Bay Green Corridor
 - being organized by Freeport Saldanha, Anglo American, Tata Steel, Engie, CMB, Vuka Marine
 - Ports can form H₂ hubs:
 - Export & Bunker fuel → HRSs → Heavy road transport, rail, & port equipment
 - New Fuels for New engines & vessels: Fuels for Existing fleet:
 - Green Ammonia NH₃ (CMB)
 - Green Methanol CH₃OH (Maersk)
- - Green Fischer-Tropsch (Sasol and PetroSA)
 - Biofuels

PetroSA presents a very specific opportunity

1) It is a State-Owned Enterprise with an uncertain future

- The NG reserves of its ocean gasfield have become depleted, halting synthesis operations
- Approx 500 staff have been retrenched
- National Treasury has repeated made clear its reluctance to support distressed SOEs.
- Purchasing NG on the international market in dollar-denominated terms, converting it into product in a regulated terrestrial transport market is not attractive
- A future with electric vehicle uptake further threatens its business case

2) That said, it:

- Is an existing Fischer-Tropsch facility, located at the coast, in a region with good solar and wind resource, on a major shipping route
- Has a staff complement (current and recently retrenched) skilled at Fischer-Tropsch synthesis
- Is of convenient size for repurposing: at 45 000 bbl/d, it is smaller than the vast majority of refineries in Western Europe
- It has a 1000 bbl/day pilot plant, ideal for a starting green fuel pilot

3) If it were to switch to make green maritime fuel (e-diesel), it would

- Sell a green drop-in fuel to a very large potential customer base, requiring no ship modifications
- Move from a regulated to a premium market with no competitors

Uses for green FT bunker fuel

1) Its fuel could be blended with fossil-based bunker fuel

- This allows vessels to decarbonize progressively over time rather than all at once, easing price shocks
- It can be supplied by standard bunkering equipment and vessels

2) It can be used by existing vessels without modifying engines or vessels

- TNPA tugboats can decarbonize without affecting operations, safety or warranties. This gives DoT and TNPA an early win.
- Instead of less that 100 methanol-compliant vessels, the customer base is more than 500 000 legacy vessels worldwide
- In previous engagement session, a potential concept of cruise vessels was using this fuel was proposed
- 3) Since it is the diesel fraction that is used, it leaves the kerosene fraction for aviation

